Nav2 Navigation Stack - humble  humble
ROS 2 Navigation Stack
amcl_node.cpp
1 /*
2  * Copyright (c) 2008, Willow Garage, Inc.
3  * All rights reserved.
4  *
5  * This library is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU Lesser General Public
7  * License as published by the Free Software Foundation; either
8  * version 2.1 of the License, or (at your option) any later version.
9  *
10  * This library is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13  * Lesser General Public License for more details.
14  *
15  * You should have received a copy of the GNU Lesser General Public
16  * License along with this library; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18  *
19  */
20 
21 /* Author: Brian Gerkey */
22 
23 #include "nav2_amcl/amcl_node.hpp"
24 
25 #include <algorithm>
26 #include <memory>
27 #include <string>
28 #include <utility>
29 #include <vector>
30 
31 #include "message_filters/subscriber.h"
32 #include "nav2_amcl/angleutils.hpp"
33 #include "nav2_util/geometry_utils.hpp"
34 #include "nav2_amcl/pf/pf.hpp"
35 #include "nav2_util/string_utils.hpp"
36 #include "nav2_amcl/sensors/laser/laser.hpp"
37 #include "tf2/convert.h"
38 #include "tf2_geometry_msgs/tf2_geometry_msgs.hpp"
39 #include "tf2/LinearMath/Transform.h"
40 #include "tf2_ros/buffer.h"
41 #include "tf2_ros/message_filter.h"
42 #include "tf2_ros/transform_broadcaster.h"
43 #include "tf2_ros/transform_listener.h"
44 #include "tf2_ros/create_timer_ros.h"
45 
46 #pragma GCC diagnostic push
47 #pragma GCC diagnostic ignored "-Wpedantic"
48 #include "tf2/utils.h"
49 #pragma GCC diagnostic pop
50 
51 #include "nav2_amcl/portable_utils.hpp"
52 #include "nav2_util/validate_messages.hpp"
53 
54 using namespace std::placeholders;
55 using rcl_interfaces::msg::ParameterType;
56 using namespace std::chrono_literals;
57 
58 namespace nav2_amcl
59 {
60 using nav2_util::geometry_utils::orientationAroundZAxis;
61 
62 AmclNode::AmclNode(const rclcpp::NodeOptions & options)
63 : nav2_util::LifecycleNode("amcl", "", options)
64 {
65  RCLCPP_INFO(get_logger(), "Creating");
66 
67  add_parameter(
68  "alpha1", rclcpp::ParameterValue(0.2),
69  "This is the alpha1 parameter", "These are additional constraints for alpha1");
70 
71  add_parameter(
72  "alpha2", rclcpp::ParameterValue(0.2),
73  "This is the alpha2 parameter", "These are additional constraints for alpha2");
74 
75  add_parameter(
76  "alpha3", rclcpp::ParameterValue(0.2),
77  "This is the alpha3 parameter", "These are additional constraints for alpha3");
78 
79  add_parameter(
80  "alpha4", rclcpp::ParameterValue(0.2),
81  "This is the alpha4 parameter", "These are additional constraints for alpha4");
82 
83  add_parameter(
84  "alpha5", rclcpp::ParameterValue(0.2),
85  "This is the alpha5 parameter", "These are additional constraints for alpha5");
86 
87  add_parameter(
88  "base_frame_id", rclcpp::ParameterValue(std::string("base_footprint")),
89  "Which frame to use for the robot base");
90 
91  add_parameter("beam_skip_distance", rclcpp::ParameterValue(0.5));
92  add_parameter("beam_skip_error_threshold", rclcpp::ParameterValue(0.9));
93  add_parameter("beam_skip_threshold", rclcpp::ParameterValue(0.3));
94  add_parameter("do_beamskip", rclcpp::ParameterValue(false));
95 
96  add_parameter(
97  "global_frame_id", rclcpp::ParameterValue(std::string("map")),
98  "The name of the coordinate frame published by the localization system");
99 
100  add_parameter(
101  "lambda_short", rclcpp::ParameterValue(0.1),
102  "Exponential decay parameter for z_short part of model");
103 
104  add_parameter(
105  "laser_likelihood_max_dist", rclcpp::ParameterValue(2.0),
106  "Maximum distance to do obstacle inflation on map, for use in likelihood_field model");
107 
108  add_parameter(
109  "laser_max_range", rclcpp::ParameterValue(100.0),
110  "Maximum scan range to be considered",
111  "-1.0 will cause the laser's reported maximum range to be used");
112 
113  add_parameter(
114  "laser_min_range", rclcpp::ParameterValue(-1.0),
115  "Minimum scan range to be considered",
116  "-1.0 will cause the laser's reported minimum range to be used");
117 
118  add_parameter(
119  "laser_model_type", rclcpp::ParameterValue(std::string("likelihood_field")),
120  "Which model to use, either beam, likelihood_field, or likelihood_field_prob",
121  "Same as likelihood_field but incorporates the beamskip feature, if enabled");
122 
123  add_parameter(
124  "set_initial_pose", rclcpp::ParameterValue(false),
125  "Causes AMCL to set initial pose from the initial_pose* parameters instead of "
126  "waiting for the initial_pose message");
127 
128  add_parameter(
129  "initial_pose.x", rclcpp::ParameterValue(0.0),
130  "X coordinate of the initial robot pose in the map frame");
131 
132  add_parameter(
133  "initial_pose.y", rclcpp::ParameterValue(0.0),
134  "Y coordinate of the initial robot pose in the map frame");
135 
136  add_parameter(
137  "initial_pose.z", rclcpp::ParameterValue(0.0),
138  "Z coordinate of the initial robot pose in the map frame");
139 
140  add_parameter(
141  "initial_pose.yaw", rclcpp::ParameterValue(0.0),
142  "Yaw of the initial robot pose in the map frame");
143 
144  add_parameter(
145  "max_beams", rclcpp::ParameterValue(60),
146  "How many evenly-spaced beams in each scan to be used when updating the filter");
147 
148  add_parameter(
149  "max_particles", rclcpp::ParameterValue(2000),
150  "Maximum allowed number of particles");
151 
152  add_parameter(
153  "min_particles", rclcpp::ParameterValue(500),
154  "Minimum allowed number of particles");
155 
156  add_parameter(
157  "odom_frame_id", rclcpp::ParameterValue(std::string("odom")),
158  "Which frame to use for odometry");
159 
160  add_parameter("pf_err", rclcpp::ParameterValue(0.05));
161  add_parameter("pf_z", rclcpp::ParameterValue(0.99));
162 
163  add_parameter(
164  "recovery_alpha_fast", rclcpp::ParameterValue(0.0),
165  "Exponential decay rate for the fast average weight filter, used in deciding when to recover "
166  "by adding random poses",
167  "A good value might be 0.1");
168 
169  add_parameter(
170  "recovery_alpha_slow", rclcpp::ParameterValue(0.0),
171  "Exponential decay rate for the slow average weight filter, used in deciding when to recover "
172  "by adding random poses",
173  "A good value might be 0.001");
174 
175  add_parameter(
176  "resample_interval", rclcpp::ParameterValue(1),
177  "Number of filter updates required before resampling");
178 
179  add_parameter("robot_model_type", rclcpp::ParameterValue("nav2_amcl::DifferentialMotionModel"));
180 
181  add_parameter(
182  "save_pose_rate", rclcpp::ParameterValue(0.5),
183  "Maximum rate (Hz) at which to store the last estimated pose and covariance to the parameter "
184  "server, in the variables ~initial_pose_* and ~initial_cov_*. This saved pose will be used "
185  "on subsequent runs to initialize the filter",
186  "-1.0 to disable");
187 
188  add_parameter("sigma_hit", rclcpp::ParameterValue(0.2));
189 
190  add_parameter(
191  "tf_broadcast", rclcpp::ParameterValue(true),
192  "Set this to false to prevent amcl from publishing the transform between the global frame and "
193  "the odometry frame");
194 
195  add_parameter(
196  "transform_tolerance", rclcpp::ParameterValue(1.0),
197  "Time with which to post-date the transform that is published, to indicate that this transform "
198  "is valid into the future");
199 
200  add_parameter(
201  "update_min_a", rclcpp::ParameterValue(0.2),
202  "Rotational movement required before performing a filter update");
203 
204  add_parameter(
205  "update_min_d", rclcpp::ParameterValue(0.25),
206  "Translational movement required before performing a filter update");
207 
208  add_parameter("z_hit", rclcpp::ParameterValue(0.5));
209  add_parameter("z_max", rclcpp::ParameterValue(0.05));
210  add_parameter("z_rand", rclcpp::ParameterValue(0.5));
211  add_parameter("z_short", rclcpp::ParameterValue(0.05));
212 
213  add_parameter(
214  "always_reset_initial_pose", rclcpp::ParameterValue(false),
215  "Requires that AMCL is provided an initial pose either via topic or initial_pose* parameter "
216  "(with parameter set_initial_pose: true) when reset. Otherwise, by default AMCL will use the"
217  "last known pose to initialize");
218 
219  add_parameter(
220  "scan_topic", rclcpp::ParameterValue("scan"),
221  "Topic to subscribe to in order to receive the laser scan for localization");
222 
223  add_parameter(
224  "map_topic", rclcpp::ParameterValue("map"),
225  "Topic to subscribe to in order to receive the map to localize on");
226 
227  add_parameter(
228  "first_map_only", rclcpp::ParameterValue(false),
229  "Set this to true, when you want to load a new map published from the map_server");
230 }
231 
232 AmclNode::~AmclNode()
233 {
234 }
235 
236 nav2_util::CallbackReturn
237 AmclNode::on_configure(const rclcpp_lifecycle::State & /*state*/)
238 {
239  RCLCPP_INFO(get_logger(), "Configuring");
240  callback_group_ = create_callback_group(
241  rclcpp::CallbackGroupType::MutuallyExclusive, false);
242  initParameters();
243  initTransforms();
244  initParticleFilter();
245  initLaserScan();
246  initMessageFilters();
247  initPubSub();
248  initServices();
249  initOdometry();
250  executor_ = std::make_shared<rclcpp::executors::SingleThreadedExecutor>();
251  executor_->add_callback_group(callback_group_, get_node_base_interface());
252  executor_thread_ = std::make_unique<nav2_util::NodeThread>(executor_);
253  return nav2_util::CallbackReturn::SUCCESS;
254 }
255 
256 nav2_util::CallbackReturn
257 AmclNode::on_activate(const rclcpp_lifecycle::State & /*state*/)
258 {
259  RCLCPP_INFO(get_logger(), "Activating");
260 
261  // Lifecycle publishers must be explicitly activated
262  pose_pub_->on_activate();
263  particle_cloud_pub_->on_activate();
264 
265  first_pose_sent_ = false;
266 
267  // Keep track of whether we're in the active state. We won't
268  // process incoming callbacks until we are
269  active_ = true;
270 
271  if (set_initial_pose_) {
272  auto msg = std::make_shared<geometry_msgs::msg::PoseWithCovarianceStamped>();
273 
274  msg->header.stamp = now();
275  msg->header.frame_id = global_frame_id_;
276  msg->pose.pose.position.x = initial_pose_x_;
277  msg->pose.pose.position.y = initial_pose_y_;
278  msg->pose.pose.position.z = initial_pose_z_;
279  msg->pose.pose.orientation = orientationAroundZAxis(initial_pose_yaw_);
280 
281  initialPoseReceived(msg);
282  } else if (init_pose_received_on_inactive) {
283  handleInitialPose(last_published_pose_);
284  }
285 
286  auto node = shared_from_this();
287  // Add callback for dynamic parameters
288  dyn_params_handler_ = node->add_on_set_parameters_callback(
289  std::bind(
290  &AmclNode::dynamicParametersCallback,
291  this, std::placeholders::_1));
292 
293  // create bond connection
294  createBond();
295 
296  return nav2_util::CallbackReturn::SUCCESS;
297 }
298 
299 nav2_util::CallbackReturn
300 AmclNode::on_deactivate(const rclcpp_lifecycle::State & /*state*/)
301 {
302  RCLCPP_INFO(get_logger(), "Deactivating");
303 
304  active_ = false;
305 
306  // Lifecycle publishers must be explicitly deactivated
307  pose_pub_->on_deactivate();
308  particle_cloud_pub_->on_deactivate();
309 
310  // reset dynamic parameter handler
311  dyn_params_handler_.reset();
312 
313  // destroy bond connection
314  destroyBond();
315 
316  return nav2_util::CallbackReturn::SUCCESS;
317 }
318 
319 nav2_util::CallbackReturn
320 AmclNode::on_cleanup(const rclcpp_lifecycle::State & /*state*/)
321 {
322  RCLCPP_INFO(get_logger(), "Cleaning up");
323 
324  executor_thread_.reset();
325 
326  // Get rid of the inputs first (services and message filter input), so we
327  // don't continue to process incoming messages
328  global_loc_srv_.reset();
329  initial_guess_srv_.reset();
330  nomotion_update_srv_.reset();
331  executor_thread_.reset(); // to make sure initial_pose_sub_ completely exit
332  initial_pose_sub_.reset();
333  laser_scan_connection_.disconnect();
334  tf_listener_.reset(); // listener may access lase_scan_filter_, so it should be reset earlier
335  laser_scan_filter_.reset();
336  laser_scan_sub_.reset();
337 
338  // Map
339  map_sub_.reset(); // map_sub_ may access map_, so it should be reset earlier
340  if (map_ != NULL) {
341  map_free(map_);
342  map_ = nullptr;
343  }
344  first_map_received_ = false;
345  free_space_indices.resize(0);
346 
347  // Transforms
348  tf_broadcaster_.reset();
349  tf_buffer_.reset();
350 
351  // PubSub
352  pose_pub_.reset();
353  particle_cloud_pub_.reset();
354 
355  // Odometry
356  motion_model_.reset();
357 
358  // Particle Filter
359  pf_free(pf_);
360  pf_ = nullptr;
361 
362  // Laser Scan
363  lasers_.clear();
364  lasers_update_.clear();
365  frame_to_laser_.clear();
366  force_update_ = true;
367 
368  if (set_initial_pose_) {
369  set_parameter(
370  rclcpp::Parameter(
371  "initial_pose.x",
372  rclcpp::ParameterValue(last_published_pose_.pose.pose.position.x)));
373  set_parameter(
374  rclcpp::Parameter(
375  "initial_pose.y",
376  rclcpp::ParameterValue(last_published_pose_.pose.pose.position.y)));
377  set_parameter(
378  rclcpp::Parameter(
379  "initial_pose.z",
380  rclcpp::ParameterValue(last_published_pose_.pose.pose.position.z)));
381  set_parameter(
382  rclcpp::Parameter(
383  "initial_pose.yaw",
384  rclcpp::ParameterValue(tf2::getYaw(last_published_pose_.pose.pose.orientation))));
385  }
386 
387  return nav2_util::CallbackReturn::SUCCESS;
388 }
389 
390 nav2_util::CallbackReturn
391 AmclNode::on_shutdown(const rclcpp_lifecycle::State & /*state*/)
392 {
393  RCLCPP_INFO(get_logger(), "Shutting down");
394  return nav2_util::CallbackReturn::SUCCESS;
395 }
396 
397 bool
398 AmclNode::checkElapsedTime(std::chrono::seconds check_interval, rclcpp::Time last_time)
399 {
400  rclcpp::Duration elapsed_time = now() - last_time;
401  if (elapsed_time.nanoseconds() * 1e-9 > check_interval.count()) {
402  return true;
403  }
404  return false;
405 }
406 
407 #if NEW_UNIFORM_SAMPLING
408 std::vector<std::pair<int, int>> AmclNode::free_space_indices;
409 #endif
410 
411 bool
412 AmclNode::getOdomPose(
413  geometry_msgs::msg::PoseStamped & odom_pose,
414  double & x, double & y, double & yaw,
415  const rclcpp::Time & sensor_timestamp, const std::string & frame_id)
416 {
417  // Get the robot's pose
418  geometry_msgs::msg::PoseStamped ident;
419  ident.header.frame_id = nav2_util::strip_leading_slash(frame_id);
420  ident.header.stamp = sensor_timestamp;
421  tf2::toMsg(tf2::Transform::getIdentity(), ident.pose);
422 
423  try {
424  tf_buffer_->transform(ident, odom_pose, odom_frame_id_);
425  } catch (tf2::TransformException & e) {
426  ++scan_error_count_;
427  if (scan_error_count_ % 20 == 0) {
428  RCLCPP_ERROR(
429  get_logger(), "(%d) consecutive laser scan transforms failed: (%s)", scan_error_count_,
430  e.what());
431  }
432  return false;
433  }
434 
435  scan_error_count_ = 0; // reset since we got a good transform
436  x = odom_pose.pose.position.x;
437  y = odom_pose.pose.position.y;
438  yaw = tf2::getYaw(odom_pose.pose.orientation);
439 
440  return true;
441 }
442 
444 AmclNode::uniformPoseGenerator(void * arg)
445 {
446  map_t * map = reinterpret_cast<map_t *>(arg);
447 
448 #if NEW_UNIFORM_SAMPLING
449  unsigned int rand_index = drand48() * free_space_indices.size();
450  std::pair<int, int> free_point = free_space_indices[rand_index];
451  pf_vector_t p;
452  p.v[0] = MAP_WXGX(map, free_point.first);
453  p.v[1] = MAP_WYGY(map, free_point.second);
454  p.v[2] = drand48() * 2 * M_PI - M_PI;
455 #else
456  double min_x, max_x, min_y, max_y;
457 
458  min_x = (map->size_x * map->scale) / 2.0 - map->origin_x;
459  max_x = (map->size_x * map->scale) / 2.0 + map->origin_x;
460  min_y = (map->size_y * map->scale) / 2.0 - map->origin_y;
461  max_y = (map->size_y * map->scale) / 2.0 + map->origin_y;
462 
463  pf_vector_t p;
464 
465  RCLCPP_DEBUG(get_logger(), "Generating new uniform sample");
466  for (;; ) {
467  p.v[0] = min_x + drand48() * (max_x - min_x);
468  p.v[1] = min_y + drand48() * (max_y - min_y);
469  p.v[2] = drand48() * 2 * M_PI - M_PI;
470  // Check that it's a free cell
471  int i, j;
472  i = MAP_GXWX(map, p.v[0]);
473  j = MAP_GYWY(map, p.v[1]);
474  if (MAP_VALID(map, i, j) && (map->cells[MAP_INDEX(map, i, j)].occ_state == -1)) {
475  break;
476  }
477  }
478 #endif
479  return p;
480 }
481 
482 void
483 AmclNode::globalLocalizationCallback(
484  const std::shared_ptr<rmw_request_id_t>/*request_header*/,
485  const std::shared_ptr<std_srvs::srv::Empty::Request>/*req*/,
486  std::shared_ptr<std_srvs::srv::Empty::Response>/*res*/)
487 {
488  std::lock_guard<std::recursive_mutex> cfl(mutex_);
489 
490  RCLCPP_INFO(get_logger(), "Initializing with uniform distribution");
491 
492  pf_init_model(
493  pf_, (pf_init_model_fn_t)AmclNode::uniformPoseGenerator,
494  reinterpret_cast<void *>(map_));
495  RCLCPP_INFO(get_logger(), "Global initialisation done!");
496  initial_pose_is_known_ = true;
497  pf_init_ = false;
498 }
499 
500 void
501 AmclNode::initialPoseReceivedSrv(
502  const std::shared_ptr<rmw_request_id_t>/*request_header*/,
503  const std::shared_ptr<nav2_msgs::srv::SetInitialPose::Request> req,
504  std::shared_ptr<nav2_msgs::srv::SetInitialPose::Response>/*res*/)
505 {
506  initialPoseReceived(std::make_shared<geometry_msgs::msg::PoseWithCovarianceStamped>(req->pose));
507 }
508 
509 // force nomotion updates (amcl updating without requiring motion)
510 void
511 AmclNode::nomotionUpdateCallback(
512  const std::shared_ptr<rmw_request_id_t>/*request_header*/,
513  const std::shared_ptr<std_srvs::srv::Empty::Request>/*req*/,
514  std::shared_ptr<std_srvs::srv::Empty::Response>/*res*/)
515 {
516  RCLCPP_INFO(get_logger(), "Requesting no-motion update");
517  force_update_ = true;
518 }
519 
520 void
521 AmclNode::initialPoseReceived(geometry_msgs::msg::PoseWithCovarianceStamped::SharedPtr msg)
522 {
523  std::lock_guard<std::recursive_mutex> cfl(mutex_);
524 
525  RCLCPP_INFO(get_logger(), "initialPoseReceived");
526 
527  if (!nav2_util::validateMsg(*msg)) {
528  RCLCPP_ERROR(get_logger(), "Received initialpose message is malformed. Rejecting.");
529  return;
530  }
531  if (nav2_util::strip_leading_slash(msg->header.frame_id) != global_frame_id_) {
532  RCLCPP_WARN(
533  get_logger(),
534  "Ignoring initial pose in frame \"%s\"; initial poses must be in the global frame, \"%s\"",
535  nav2_util::strip_leading_slash(msg->header.frame_id).c_str(),
536  global_frame_id_.c_str());
537  return;
538  }
539  // Overriding last published pose to initial pose
540  last_published_pose_ = *msg;
541 
542  if (!active_) {
543  init_pose_received_on_inactive = true;
544  RCLCPP_WARN(
545  get_logger(), "Received initial pose request, "
546  "but AMCL is not yet in the active state");
547  return;
548  }
549  handleInitialPose(*msg);
550 }
551 
552 void
553 AmclNode::handleInitialPose(geometry_msgs::msg::PoseWithCovarianceStamped & msg)
554 {
555  std::lock_guard<std::recursive_mutex> cfl(mutex_);
556  // In case the client sent us a pose estimate in the past, integrate the
557  // intervening odometric change.
558  geometry_msgs::msg::TransformStamped tx_odom;
559  try {
560  rclcpp::Time rclcpp_time = now();
561  tf2::TimePoint tf2_time(std::chrono::nanoseconds(rclcpp_time.nanoseconds()));
562 
563  // Check if the transform is available
564  tx_odom = tf_buffer_->lookupTransform(
565  base_frame_id_, tf2_ros::fromMsg(msg.header.stamp),
566  base_frame_id_, tf2_time, odom_frame_id_);
567  } catch (tf2::TransformException & e) {
568  // If we've never sent a transform, then this is normal, because the
569  // global_frame_id_ frame doesn't exist. We only care about in-time
570  // transformation for on-the-move pose-setting, so ignoring this
571  // startup condition doesn't really cost us anything.
572  if (sent_first_transform_) {
573  RCLCPP_WARN(get_logger(), "Failed to transform initial pose in time (%s)", e.what());
574  }
575  tf2::impl::Converter<false, true>::convert(tf2::Transform::getIdentity(), tx_odom.transform);
576  }
577 
578  tf2::Transform tx_odom_tf2;
579  tf2::impl::Converter<true, false>::convert(tx_odom.transform, tx_odom_tf2);
580 
581  tf2::Transform pose_old;
582  tf2::impl::Converter<true, false>::convert(msg.pose.pose, pose_old);
583 
584  tf2::Transform pose_new = pose_old * tx_odom_tf2;
585 
586  // Transform into the global frame
587 
588  RCLCPP_INFO(
589  get_logger(), "Setting pose (%.6f): %.3f %.3f %.3f",
590  now().nanoseconds() * 1e-9,
591  pose_new.getOrigin().x(),
592  pose_new.getOrigin().y(),
593  tf2::getYaw(pose_new.getRotation()));
594 
595  // Re-initialize the filter
596  pf_vector_t pf_init_pose_mean = pf_vector_zero();
597  pf_init_pose_mean.v[0] = pose_new.getOrigin().x();
598  pf_init_pose_mean.v[1] = pose_new.getOrigin().y();
599  pf_init_pose_mean.v[2] = tf2::getYaw(pose_new.getRotation());
600 
601  pf_matrix_t pf_init_pose_cov = pf_matrix_zero();
602  // Copy in the covariance, converting from 6-D to 3-D
603  for (int i = 0; i < 2; i++) {
604  for (int j = 0; j < 2; j++) {
605  pf_init_pose_cov.m[i][j] = msg.pose.covariance[6 * i + j];
606  }
607  }
608 
609  pf_init_pose_cov.m[2][2] = msg.pose.covariance[6 * 5 + 5];
610 
611  pf_init(pf_, pf_init_pose_mean, pf_init_pose_cov);
612  pf_init_ = false;
613  init_pose_received_on_inactive = false;
614  initial_pose_is_known_ = true;
615 }
616 
617 void
618 AmclNode::laserReceived(sensor_msgs::msg::LaserScan::ConstSharedPtr laser_scan)
619 {
620  std::lock_guard<std::recursive_mutex> cfl(mutex_);
621 
622  // Since the sensor data is continually being published by the simulator or robot,
623  // we don't want our callbacks to fire until we're in the active state
624  if (!active_) {return;}
625  if (!first_map_received_) {
626  if (checkElapsedTime(2s, last_time_printed_msg_)) {
627  RCLCPP_WARN(get_logger(), "Waiting for map....");
628  last_time_printed_msg_ = now();
629  }
630  return;
631  }
632 
633  std::string laser_scan_frame_id = nav2_util::strip_leading_slash(laser_scan->header.frame_id);
634  last_laser_received_ts_ = now();
635  int laser_index = -1;
636  geometry_msgs::msg::PoseStamped laser_pose;
637 
638  // Do we have the base->base_laser Tx yet?
639  if (frame_to_laser_.find(laser_scan_frame_id) == frame_to_laser_.end()) {
640  if (!addNewScanner(laser_index, laser_scan, laser_scan_frame_id, laser_pose)) {
641  return; // could not find transform
642  }
643  } else {
644  // we have the laser pose, retrieve laser index
645  laser_index = frame_to_laser_[laser_scan->header.frame_id];
646  }
647 
648  // Where was the robot when this scan was taken?
649  pf_vector_t pose;
650  if (!getOdomPose(
651  latest_odom_pose_, pose.v[0], pose.v[1], pose.v[2],
652  laser_scan->header.stamp, base_frame_id_))
653  {
654  RCLCPP_ERROR(get_logger(), "Couldn't determine robot's pose associated with laser scan");
655  return;
656  }
657 
658  pf_vector_t delta = pf_vector_zero();
659  bool force_publication = false;
660  if (!pf_init_) {
661  // Pose at last filter update
662  pf_odom_pose_ = pose;
663  pf_init_ = true;
664 
665  for (unsigned int i = 0; i < lasers_update_.size(); i++) {
666  lasers_update_[i] = true;
667  }
668 
669  force_publication = true;
670  resample_count_ = 0;
671  } else {
672  // Set the laser update flags
673  if (shouldUpdateFilter(pose, delta)) {
674  for (unsigned int i = 0; i < lasers_update_.size(); i++) {
675  lasers_update_[i] = true;
676  }
677  }
678  if (lasers_update_[laser_index]) {
679  motion_model_->odometryUpdate(pf_, pose, delta);
680  }
681  force_update_ = false;
682  }
683 
684  bool resampled = false;
685 
686  // If the robot has moved, update the filter
687  if (lasers_update_[laser_index]) {
688  updateFilter(laser_index, laser_scan, pose);
689 
690  // Resample the particles
691  if (!(++resample_count_ % resample_interval_)) {
692  pf_update_resample(pf_, reinterpret_cast<void *>(map_));
693  resampled = true;
694  }
695 
696  pf_sample_set_t * set = pf_->sets + pf_->current_set;
697  RCLCPP_DEBUG(get_logger(), "Num samples: %d\n", set->sample_count);
698 
699  if (!force_update_) {
700  publishParticleCloud(set);
701  }
702  }
703  if (resampled || force_publication || !first_pose_sent_) {
704  amcl_hyp_t max_weight_hyps;
705  std::vector<amcl_hyp_t> hyps;
706  int max_weight_hyp = -1;
707  if (getMaxWeightHyp(hyps, max_weight_hyps, max_weight_hyp)) {
708  publishAmclPose(laser_scan, hyps, max_weight_hyp);
709  calculateMaptoOdomTransform(laser_scan, hyps, max_weight_hyp);
710 
711  if (tf_broadcast_ == true) {
712  // We want to send a transform that is good up until a
713  // tolerance time so that odom can be used
714  auto stamp = tf2_ros::fromMsg(laser_scan->header.stamp);
715  tf2::TimePoint transform_expiration = stamp + transform_tolerance_;
716  sendMapToOdomTransform(transform_expiration);
717  sent_first_transform_ = true;
718  }
719  } else {
720  RCLCPP_ERROR(get_logger(), "No pose!");
721  }
722  } else if (latest_tf_valid_) {
723  if (tf_broadcast_ == true) {
724  // Nothing changed, so we'll just republish the last transform, to keep
725  // everybody happy.
726  tf2::TimePoint transform_expiration = tf2_ros::fromMsg(laser_scan->header.stamp) +
727  transform_tolerance_;
728  sendMapToOdomTransform(transform_expiration);
729  }
730  }
731 }
732 
733 bool AmclNode::addNewScanner(
734  int & laser_index,
735  const sensor_msgs::msg::LaserScan::ConstSharedPtr & laser_scan,
736  const std::string & laser_scan_frame_id,
737  geometry_msgs::msg::PoseStamped & laser_pose)
738 {
739  lasers_.push_back(createLaserObject());
740  lasers_update_.push_back(true);
741  laser_index = frame_to_laser_.size();
742 
743  geometry_msgs::msg::PoseStamped ident;
744  ident.header.frame_id = laser_scan_frame_id;
745  ident.header.stamp = rclcpp::Time();
746  tf2::toMsg(tf2::Transform::getIdentity(), ident.pose);
747  try {
748  tf_buffer_->transform(ident, laser_pose, base_frame_id_, transform_tolerance_);
749  } catch (tf2::TransformException & e) {
750  RCLCPP_ERROR(
751  get_logger(), "Couldn't transform from %s to %s, "
752  "even though the message notifier is in use: (%s)",
753  laser_scan->header.frame_id.c_str(),
754  base_frame_id_.c_str(), e.what());
755  return false;
756  }
757 
758  pf_vector_t laser_pose_v;
759  laser_pose_v.v[0] = laser_pose.pose.position.x;
760  laser_pose_v.v[1] = laser_pose.pose.position.y;
761  // laser mounting angle gets computed later -> set to 0 here!
762  laser_pose_v.v[2] = 0;
763  lasers_[laser_index]->SetLaserPose(laser_pose_v);
764  frame_to_laser_[laser_scan->header.frame_id] = laser_index;
765  return true;
766 }
767 
768 bool AmclNode::shouldUpdateFilter(const pf_vector_t pose, pf_vector_t & delta)
769 {
770  delta.v[0] = pose.v[0] - pf_odom_pose_.v[0];
771  delta.v[1] = pose.v[1] - pf_odom_pose_.v[1];
772  delta.v[2] = angleutils::angle_diff(pose.v[2], pf_odom_pose_.v[2]);
773 
774  // See if we should update the filter
775  bool update = fabs(delta.v[0]) > d_thresh_ ||
776  fabs(delta.v[1]) > d_thresh_ ||
777  fabs(delta.v[2]) > a_thresh_;
778  update = update || force_update_;
779  return update;
780 }
781 
782 bool AmclNode::updateFilter(
783  const int & laser_index,
784  const sensor_msgs::msg::LaserScan::ConstSharedPtr & laser_scan,
785  const pf_vector_t & pose)
786 {
787  nav2_amcl::LaserData ldata;
788  ldata.laser = lasers_[laser_index];
789  ldata.range_count = laser_scan->ranges.size();
790  // To account for lasers that are mounted upside-down, we determine the
791  // min, max, and increment angles of the laser in the base frame.
792  //
793  // Construct min and max angles of laser, in the base_link frame.
794  // Here we set the roll pich yaw of the lasers. We assume roll and pich are zero.
795  geometry_msgs::msg::QuaternionStamped min_q, inc_q;
796  min_q.header.stamp = laser_scan->header.stamp;
797  min_q.header.frame_id = nav2_util::strip_leading_slash(laser_scan->header.frame_id);
798  min_q.quaternion = orientationAroundZAxis(laser_scan->angle_min);
799 
800  inc_q.header = min_q.header;
801  inc_q.quaternion = orientationAroundZAxis(laser_scan->angle_min + laser_scan->angle_increment);
802  try {
803  tf_buffer_->transform(min_q, min_q, base_frame_id_);
804  tf_buffer_->transform(inc_q, inc_q, base_frame_id_);
805  } catch (tf2::TransformException & e) {
806  RCLCPP_WARN(
807  get_logger(), "Unable to transform min/max laser angles into base frame: %s",
808  e.what());
809  return false;
810  }
811  double angle_min = tf2::getYaw(min_q.quaternion);
812  double angle_increment = tf2::getYaw(inc_q.quaternion) - angle_min;
813 
814  // wrapping angle to [-pi .. pi]
815  angle_increment = fmod(angle_increment + 5 * M_PI, 2 * M_PI) - M_PI;
816 
817  RCLCPP_DEBUG(
818  get_logger(), "Laser %d angles in base frame: min: %.3f inc: %.3f", laser_index, angle_min,
819  angle_increment);
820 
821  // Apply range min/max thresholds, if the user supplied them
822  if (laser_max_range_ > 0.0) {
823  ldata.range_max = std::min(laser_scan->range_max, static_cast<float>(laser_max_range_));
824  } else {
825  ldata.range_max = laser_scan->range_max;
826  }
827  double range_min;
828  if (laser_min_range_ > 0.0) {
829  range_min = std::max(laser_scan->range_min, static_cast<float>(laser_min_range_));
830  } else {
831  range_min = laser_scan->range_min;
832  }
833 
834  // The LaserData destructor will free this memory
835  ldata.ranges = new double[ldata.range_count][2];
836  for (int i = 0; i < ldata.range_count; i++) {
837  // amcl doesn't (yet) have a concept of min range. So we'll map short
838  // readings to max range.
839  if (laser_scan->ranges[i] <= range_min) {
840  ldata.ranges[i][0] = ldata.range_max;
841  } else {
842  ldata.ranges[i][0] = laser_scan->ranges[i];
843  }
844  // Compute bearing
845  ldata.ranges[i][1] = angle_min +
846  (i * angle_increment);
847  }
848  lasers_[laser_index]->sensorUpdate(pf_, reinterpret_cast<nav2_amcl::LaserData *>(&ldata));
849  lasers_update_[laser_index] = false;
850  pf_odom_pose_ = pose;
851  return true;
852 }
853 
854 void
855 AmclNode::publishParticleCloud(const pf_sample_set_t * set)
856 {
857  // If initial pose is not known, AMCL does not know the current pose
858  if (!initial_pose_is_known_) {return;}
859  auto cloud_with_weights_msg = std::make_unique<nav2_msgs::msg::ParticleCloud>();
860  cloud_with_weights_msg->header.stamp = this->now();
861  cloud_with_weights_msg->header.frame_id = global_frame_id_;
862  cloud_with_weights_msg->particles.resize(set->sample_count);
863 
864  for (int i = 0; i < set->sample_count; i++) {
865  cloud_with_weights_msg->particles[i].pose.position.x = set->samples[i].pose.v[0];
866  cloud_with_weights_msg->particles[i].pose.position.y = set->samples[i].pose.v[1];
867  cloud_with_weights_msg->particles[i].pose.position.z = 0;
868  cloud_with_weights_msg->particles[i].pose.orientation = orientationAroundZAxis(
869  set->samples[i].pose.v[2]);
870  cloud_with_weights_msg->particles[i].weight = set->samples[i].weight;
871  }
872 
873  particle_cloud_pub_->publish(std::move(cloud_with_weights_msg));
874 }
875 
876 bool
877 AmclNode::getMaxWeightHyp(
878  std::vector<amcl_hyp_t> & hyps, amcl_hyp_t & max_weight_hyps,
879  int & max_weight_hyp)
880 {
881  // Read out the current hypotheses
882  double max_weight = 0.0;
883  hyps.resize(pf_->sets[pf_->current_set].cluster_count);
884  for (int hyp_count = 0;
885  hyp_count < pf_->sets[pf_->current_set].cluster_count; hyp_count++)
886  {
887  double weight;
888  pf_vector_t pose_mean;
889  pf_matrix_t pose_cov;
890  if (!pf_get_cluster_stats(pf_, hyp_count, &weight, &pose_mean, &pose_cov)) {
891  RCLCPP_ERROR(get_logger(), "Couldn't get stats on cluster %d", hyp_count);
892  return false;
893  }
894 
895  hyps[hyp_count].weight = weight;
896  hyps[hyp_count].pf_pose_mean = pose_mean;
897  hyps[hyp_count].pf_pose_cov = pose_cov;
898 
899  if (hyps[hyp_count].weight > max_weight) {
900  max_weight = hyps[hyp_count].weight;
901  max_weight_hyp = hyp_count;
902  }
903  }
904 
905  if (max_weight > 0.0) {
906  RCLCPP_DEBUG(
907  get_logger(), "Max weight pose: %.3f %.3f %.3f",
908  hyps[max_weight_hyp].pf_pose_mean.v[0],
909  hyps[max_weight_hyp].pf_pose_mean.v[1],
910  hyps[max_weight_hyp].pf_pose_mean.v[2]);
911 
912  max_weight_hyps = hyps[max_weight_hyp];
913  return true;
914  }
915  return false;
916 }
917 
918 void
919 AmclNode::publishAmclPose(
920  const sensor_msgs::msg::LaserScan::ConstSharedPtr & laser_scan,
921  const std::vector<amcl_hyp_t> & hyps, const int & max_weight_hyp)
922 {
923  // If initial pose is not known, AMCL does not know the current pose
924  if (!initial_pose_is_known_) {
925  if (checkElapsedTime(2s, last_time_printed_msg_)) {
926  RCLCPP_WARN(
927  get_logger(), "AMCL cannot publish a pose or update the transform. "
928  "Please set the initial pose...");
929  last_time_printed_msg_ = now();
930  }
931  return;
932  }
933 
934  auto p = std::make_unique<geometry_msgs::msg::PoseWithCovarianceStamped>();
935  // Fill in the header
936  p->header.frame_id = global_frame_id_;
937  p->header.stamp = laser_scan->header.stamp;
938  // Copy in the pose
939  p->pose.pose.position.x = hyps[max_weight_hyp].pf_pose_mean.v[0];
940  p->pose.pose.position.y = hyps[max_weight_hyp].pf_pose_mean.v[1];
941  p->pose.pose.orientation = orientationAroundZAxis(hyps[max_weight_hyp].pf_pose_mean.v[2]);
942  // Copy in the covariance, converting from 3-D to 6-D
943  pf_sample_set_t * set = pf_->sets + pf_->current_set;
944  for (int i = 0; i < 2; i++) {
945  for (int j = 0; j < 2; j++) {
946  // Report the overall filter covariance, rather than the
947  // covariance for the highest-weight cluster
948  // p->covariance[6*i+j] = hyps[max_weight_hyp].pf_pose_cov.m[i][j];
949  p->pose.covariance[6 * i + j] = set->cov.m[i][j];
950  }
951  }
952  p->pose.covariance[6 * 5 + 5] = set->cov.m[2][2];
953  float temp = 0.0;
954  for (auto covariance_value : p->pose.covariance) {
955  temp += covariance_value;
956  }
957  temp += p->pose.pose.position.x + p->pose.pose.position.y;
958  if (!std::isnan(temp)) {
959  RCLCPP_DEBUG(get_logger(), "Publishing pose");
960  last_published_pose_ = *p;
961  first_pose_sent_ = true;
962  pose_pub_->publish(std::move(p));
963  } else {
964  RCLCPP_WARN(
965  get_logger(), "AMCL covariance or pose is NaN, likely due to an invalid "
966  "configuration or faulty sensor measurements! Pose is not available!");
967  }
968 
969  RCLCPP_DEBUG(
970  get_logger(), "New pose: %6.3f %6.3f %6.3f",
971  hyps[max_weight_hyp].pf_pose_mean.v[0],
972  hyps[max_weight_hyp].pf_pose_mean.v[1],
973  hyps[max_weight_hyp].pf_pose_mean.v[2]);
974 }
975 
976 void
977 AmclNode::calculateMaptoOdomTransform(
978  const sensor_msgs::msg::LaserScan::ConstSharedPtr & laser_scan,
979  const std::vector<amcl_hyp_t> & hyps, const int & max_weight_hyp)
980 {
981  // subtracting base to odom from map to base and send map to odom instead
982  geometry_msgs::msg::PoseStamped odom_to_map;
983  try {
984  tf2::Quaternion q;
985  q.setRPY(0, 0, hyps[max_weight_hyp].pf_pose_mean.v[2]);
986  tf2::Transform tmp_tf(q, tf2::Vector3(
987  hyps[max_weight_hyp].pf_pose_mean.v[0],
988  hyps[max_weight_hyp].pf_pose_mean.v[1],
989  0.0));
990 
991  geometry_msgs::msg::PoseStamped tmp_tf_stamped;
992  tmp_tf_stamped.header.frame_id = base_frame_id_;
993  tmp_tf_stamped.header.stamp = laser_scan->header.stamp;
994  tf2::toMsg(tmp_tf.inverse(), tmp_tf_stamped.pose);
995 
996  tf_buffer_->transform(tmp_tf_stamped, odom_to_map, odom_frame_id_);
997  } catch (tf2::TransformException & e) {
998  RCLCPP_DEBUG(get_logger(), "Failed to subtract base to odom transform: (%s)", e.what());
999  return;
1000  }
1001 
1002  tf2::impl::Converter<true, false>::convert(odom_to_map.pose, latest_tf_);
1003  latest_tf_valid_ = true;
1004 }
1005 
1006 void
1007 AmclNode::sendMapToOdomTransform(const tf2::TimePoint & transform_expiration)
1008 {
1009  // AMCL will update transform only when it has knowledge about robot's initial position
1010  if (!initial_pose_is_known_) {return;}
1011  geometry_msgs::msg::TransformStamped tmp_tf_stamped;
1012  tmp_tf_stamped.header.frame_id = global_frame_id_;
1013  tmp_tf_stamped.header.stamp = tf2_ros::toMsg(transform_expiration);
1014  tmp_tf_stamped.child_frame_id = odom_frame_id_;
1015  tf2::impl::Converter<false, true>::convert(latest_tf_.inverse(), tmp_tf_stamped.transform);
1016  tf_broadcaster_->sendTransform(tmp_tf_stamped);
1017 }
1018 
1020 AmclNode::createLaserObject()
1021 {
1022  RCLCPP_INFO(get_logger(), "createLaserObject");
1023 
1024  if (sensor_model_type_ == "beam") {
1025  return new nav2_amcl::BeamModel(
1026  z_hit_, z_short_, z_max_, z_rand_, sigma_hit_, lambda_short_,
1027  0.0, max_beams_, map_);
1028  }
1029 
1030  if (sensor_model_type_ == "likelihood_field_prob") {
1032  z_hit_, z_rand_, sigma_hit_,
1033  laser_likelihood_max_dist_, do_beamskip_, beam_skip_distance_, beam_skip_threshold_,
1034  beam_skip_error_threshold_, max_beams_, map_);
1035  }
1036 
1038  z_hit_, z_rand_, sigma_hit_,
1039  laser_likelihood_max_dist_, max_beams_, map_);
1040 }
1041 
1042 void
1043 AmclNode::initParameters()
1044 {
1045  double save_pose_rate;
1046  double tmp_tol;
1047 
1048  get_parameter("alpha1", alpha1_);
1049  get_parameter("alpha2", alpha2_);
1050  get_parameter("alpha3", alpha3_);
1051  get_parameter("alpha4", alpha4_);
1052  get_parameter("alpha5", alpha5_);
1053  get_parameter("base_frame_id", base_frame_id_);
1054  get_parameter("beam_skip_distance", beam_skip_distance_);
1055  get_parameter("beam_skip_error_threshold", beam_skip_error_threshold_);
1056  get_parameter("beam_skip_threshold", beam_skip_threshold_);
1057  get_parameter("do_beamskip", do_beamskip_);
1058  get_parameter("global_frame_id", global_frame_id_);
1059  get_parameter("lambda_short", lambda_short_);
1060  get_parameter("laser_likelihood_max_dist", laser_likelihood_max_dist_);
1061  get_parameter("laser_max_range", laser_max_range_);
1062  get_parameter("laser_min_range", laser_min_range_);
1063  get_parameter("laser_model_type", sensor_model_type_);
1064  get_parameter("set_initial_pose", set_initial_pose_);
1065  get_parameter("initial_pose.x", initial_pose_x_);
1066  get_parameter("initial_pose.y", initial_pose_y_);
1067  get_parameter("initial_pose.z", initial_pose_z_);
1068  get_parameter("initial_pose.yaw", initial_pose_yaw_);
1069  get_parameter("max_beams", max_beams_);
1070  get_parameter("max_particles", max_particles_);
1071  get_parameter("min_particles", min_particles_);
1072  get_parameter("odom_frame_id", odom_frame_id_);
1073  get_parameter("pf_err", pf_err_);
1074  get_parameter("pf_z", pf_z_);
1075  get_parameter("recovery_alpha_fast", alpha_fast_);
1076  get_parameter("recovery_alpha_slow", alpha_slow_);
1077  get_parameter("resample_interval", resample_interval_);
1078  get_parameter("robot_model_type", robot_model_type_);
1079  get_parameter("save_pose_rate", save_pose_rate);
1080  get_parameter("sigma_hit", sigma_hit_);
1081  get_parameter("tf_broadcast", tf_broadcast_);
1082  get_parameter("transform_tolerance", tmp_tol);
1083  get_parameter("update_min_a", a_thresh_);
1084  get_parameter("update_min_d", d_thresh_);
1085  get_parameter("z_hit", z_hit_);
1086  get_parameter("z_max", z_max_);
1087  get_parameter("z_rand", z_rand_);
1088  get_parameter("z_short", z_short_);
1089  get_parameter("first_map_only", first_map_only_);
1090  get_parameter("always_reset_initial_pose", always_reset_initial_pose_);
1091  get_parameter("scan_topic", scan_topic_);
1092  get_parameter("map_topic", map_topic_);
1093 
1094  save_pose_period_ = tf2::durationFromSec(1.0 / save_pose_rate);
1095  transform_tolerance_ = tf2::durationFromSec(tmp_tol);
1096 
1097  odom_frame_id_ = nav2_util::strip_leading_slash(odom_frame_id_);
1098  base_frame_id_ = nav2_util::strip_leading_slash(base_frame_id_);
1099  global_frame_id_ = nav2_util::strip_leading_slash(global_frame_id_);
1100 
1101  last_time_printed_msg_ = now();
1102 
1103  // Semantic checks
1104  if (laser_likelihood_max_dist_ < 0) {
1105  RCLCPP_WARN(
1106  get_logger(), "You've set laser_likelihood_max_dist to be negative,"
1107  " this isn't allowed so it will be set to default value 2.0.");
1108  laser_likelihood_max_dist_ = 2.0;
1109  }
1110  if (max_particles_ < 0) {
1111  RCLCPP_WARN(
1112  get_logger(), "You've set max_particles to be negative,"
1113  " this isn't allowed so it will be set to default value 2000.");
1114  max_particles_ = 2000;
1115  }
1116 
1117  if (min_particles_ < 0) {
1118  RCLCPP_WARN(
1119  get_logger(), "You've set min_particles to be negative,"
1120  " this isn't allowed so it will be set to default value 500.");
1121  min_particles_ = 500;
1122  }
1123 
1124  if (min_particles_ > max_particles_) {
1125  RCLCPP_WARN(
1126  get_logger(), "You've set min_particles to be greater than max particles,"
1127  " this isn't allowed so max_particles will be set to min_particles.");
1128  max_particles_ = min_particles_;
1129  }
1130 
1131  if (resample_interval_ <= 0) {
1132  RCLCPP_WARN(
1133  get_logger(), "You've set resample_interval to be zero or negative,"
1134  " this isn't allowed so it will be set to default value to 1.");
1135  resample_interval_ = 1;
1136  }
1137 
1138  if (always_reset_initial_pose_) {
1139  initial_pose_is_known_ = false;
1140  }
1141 }
1142 
1147 rcl_interfaces::msg::SetParametersResult
1148 AmclNode::dynamicParametersCallback(
1149  std::vector<rclcpp::Parameter> parameters)
1150 {
1151  std::lock_guard<std::recursive_mutex> cfl(mutex_);
1152  rcl_interfaces::msg::SetParametersResult result;
1153  double save_pose_rate;
1154  double tmp_tol;
1155 
1156  int max_particles = max_particles_;
1157  int min_particles = min_particles_;
1158 
1159  bool reinit_pf = false;
1160  bool reinit_odom = false;
1161  bool reinit_laser = false;
1162  bool reinit_map = false;
1163 
1164  for (auto parameter : parameters) {
1165  const auto & param_type = parameter.get_type();
1166  const auto & param_name = parameter.get_name();
1167 
1168  if (param_type == ParameterType::PARAMETER_DOUBLE) {
1169  if (param_name == "alpha1") {
1170  alpha1_ = parameter.as_double();
1171  //alpha restricted to be non-negative
1172  if (alpha1_ < 0.0) {
1173  RCLCPP_WARN(
1174  get_logger(), "You've set alpha1 to be negative,"
1175  " this isn't allowed, so the alpha1 will be set to be zero.");
1176  alpha1_ = 0.0;
1177  }
1178  reinit_odom = true;
1179  } else if (param_name == "alpha2") {
1180  alpha2_ = parameter.as_double();
1181  //alpha restricted to be non-negative
1182  if (alpha2_ < 0.0) {
1183  RCLCPP_WARN(
1184  get_logger(), "You've set alpha2 to be negative,"
1185  " this isn't allowed, so the alpha2 will be set to be zero.");
1186  alpha2_ = 0.0;
1187  }
1188  reinit_odom = true;
1189  } else if (param_name == "alpha3") {
1190  alpha3_ = parameter.as_double();
1191  //alpha restricted to be non-negative
1192  if (alpha3_ < 0.0) {
1193  RCLCPP_WARN(
1194  get_logger(), "You've set alpha3 to be negative,"
1195  " this isn't allowed, so the alpha3 will be set to be zero.");
1196  alpha3_ = 0.0;
1197  }
1198  reinit_odom = true;
1199  } else if (param_name == "alpha4") {
1200  alpha4_ = parameter.as_double();
1201  //alpha restricted to be non-negative
1202  if (alpha4_ < 0.0) {
1203  RCLCPP_WARN(
1204  get_logger(), "You've set alpha4 to be negative,"
1205  " this isn't allowed, so the alpha4 will be set to be zero.");
1206  alpha4_ = 0.0;
1207  }
1208  reinit_odom = true;
1209  } else if (param_name == "alpha5") {
1210  alpha5_ = parameter.as_double();
1211  //alpha restricted to be non-negative
1212  if (alpha5_ < 0.0) {
1213  RCLCPP_WARN(
1214  get_logger(), "You've set alpha5 to be negative,"
1215  " this isn't allowed, so the alpha5 will be set to be zero.");
1216  alpha5_ = 0.0;
1217  }
1218  reinit_odom = true;
1219  } else if (param_name == "beam_skip_distance") {
1220  beam_skip_distance_ = parameter.as_double();
1221  reinit_laser = true;
1222  } else if (param_name == "beam_skip_error_threshold") {
1223  beam_skip_error_threshold_ = parameter.as_double();
1224  reinit_laser = true;
1225  } else if (param_name == "beam_skip_threshold") {
1226  beam_skip_threshold_ = parameter.as_double();
1227  reinit_laser = true;
1228  } else if (param_name == "lambda_short") {
1229  lambda_short_ = parameter.as_double();
1230  reinit_laser = true;
1231  } else if (param_name == "laser_likelihood_max_dist") {
1232  laser_likelihood_max_dist_ = parameter.as_double();
1233  reinit_laser = true;
1234  } else if (param_name == "laser_max_range") {
1235  laser_max_range_ = parameter.as_double();
1236  reinit_laser = true;
1237  } else if (param_name == "laser_min_range") {
1238  laser_min_range_ = parameter.as_double();
1239  reinit_laser = true;
1240  } else if (param_name == "pf_err") {
1241  pf_err_ = parameter.as_double();
1242  reinit_pf = true;
1243  } else if (param_name == "pf_z") {
1244  pf_z_ = parameter.as_double();
1245  reinit_pf = true;
1246  } else if (param_name == "recovery_alpha_fast") {
1247  alpha_fast_ = parameter.as_double();
1248  reinit_pf = true;
1249  } else if (param_name == "recovery_alpha_slow") {
1250  alpha_slow_ = parameter.as_double();
1251  reinit_pf = true;
1252  } else if (param_name == "save_pose_rate") {
1253  save_pose_rate = parameter.as_double();
1254  save_pose_period_ = tf2::durationFromSec(1.0 / save_pose_rate);
1255  } else if (param_name == "sigma_hit") {
1256  sigma_hit_ = parameter.as_double();
1257  reinit_laser = true;
1258  } else if (param_name == "transform_tolerance") {
1259  tmp_tol = parameter.as_double();
1260  transform_tolerance_ = tf2::durationFromSec(tmp_tol);
1261  reinit_laser = true;
1262  } else if (param_name == "update_min_a") {
1263  a_thresh_ = parameter.as_double();
1264  } else if (param_name == "update_min_d") {
1265  d_thresh_ = parameter.as_double();
1266  } else if (param_name == "z_hit") {
1267  z_hit_ = parameter.as_double();
1268  reinit_laser = true;
1269  } else if (param_name == "z_max") {
1270  z_max_ = parameter.as_double();
1271  reinit_laser = true;
1272  } else if (param_name == "z_rand") {
1273  z_rand_ = parameter.as_double();
1274  reinit_laser = true;
1275  } else if (param_name == "z_short") {
1276  z_short_ = parameter.as_double();
1277  reinit_laser = true;
1278  }
1279  } else if (param_type == ParameterType::PARAMETER_STRING) {
1280  if (param_name == "base_frame_id") {
1281  base_frame_id_ = parameter.as_string();
1282  } else if (param_name == "global_frame_id") {
1283  global_frame_id_ = parameter.as_string();
1284  } else if (param_name == "map_topic") {
1285  map_topic_ = parameter.as_string();
1286  reinit_map = true;
1287  } else if (param_name == "laser_model_type") {
1288  sensor_model_type_ = parameter.as_string();
1289  reinit_laser = true;
1290  } else if (param_name == "odom_frame_id") {
1291  odom_frame_id_ = parameter.as_string();
1292  reinit_laser = true;
1293  } else if (param_name == "scan_topic") {
1294  scan_topic_ = parameter.as_string();
1295  reinit_laser = true;
1296  } else if (param_name == "robot_model_type") {
1297  robot_model_type_ = parameter.as_string();
1298  reinit_odom = true;
1299  }
1300  } else if (param_type == ParameterType::PARAMETER_BOOL) {
1301  if (param_name == "do_beamskip") {
1302  do_beamskip_ = parameter.as_bool();
1303  reinit_laser = true;
1304  } else if (param_name == "tf_broadcast") {
1305  tf_broadcast_ = parameter.as_bool();
1306  } else if (param_name == "set_initial_pose") {
1307  set_initial_pose_ = parameter.as_bool();
1308  } else if (param_name == "first_map_only") {
1309  first_map_only_ = parameter.as_bool();
1310  }
1311  } else if (param_type == ParameterType::PARAMETER_INTEGER) {
1312  if (param_name == "max_beams") {
1313  max_beams_ = parameter.as_int();
1314  reinit_laser = true;
1315  } else if (param_name == "max_particles") {
1316  max_particles_ = parameter.as_int();
1317  reinit_pf = true;
1318  } else if (param_name == "min_particles") {
1319  min_particles_ = parameter.as_int();
1320  reinit_pf = true;
1321  } else if (param_name == "resample_interval") {
1322  resample_interval_ = parameter.as_int();
1323  }
1324  }
1325  }
1326 
1327  // Checking if the minimum particles is greater than max_particles_
1328  if (min_particles_ > max_particles_) {
1329  RCLCPP_ERROR(
1330  this->get_logger(),
1331  "You've set min_particles to be greater than max particles,"
1332  " this isn't allowed.");
1333  // sticking to the old values
1334  max_particles_ = max_particles;
1335  min_particles_ = min_particles;
1336  result.successful = false;
1337  return result;
1338  }
1339 
1340  // Re-initialize the particle filter
1341  if (reinit_pf) {
1342  if (pf_ != NULL) {
1343  pf_free(pf_);
1344  pf_ = NULL;
1345  }
1346  initParticleFilter();
1347  }
1348 
1349  // Re-initialize the odometry
1350  if (reinit_odom) {
1351  motion_model_.reset();
1352  initOdometry();
1353  }
1354 
1355  // Re-initialize the lasers and it's filters
1356  if (reinit_laser) {
1357  lasers_.clear();
1358  lasers_update_.clear();
1359  frame_to_laser_.clear();
1360  laser_scan_connection_.disconnect();
1361  laser_scan_filter_.reset();
1362  laser_scan_sub_.reset();
1363 
1364  initMessageFilters();
1365  }
1366 
1367  // Re-initialize the map
1368  if (reinit_map) {
1369  map_sub_.reset();
1370  map_sub_ = create_subscription<nav_msgs::msg::OccupancyGrid>(
1371  map_topic_, rclcpp::QoS(rclcpp::KeepLast(1)).transient_local().reliable(),
1372  std::bind(&AmclNode::mapReceived, this, std::placeholders::_1));
1373  }
1374 
1375  result.successful = true;
1376  return result;
1377 }
1378 
1379 void
1380 AmclNode::mapReceived(const nav_msgs::msg::OccupancyGrid::SharedPtr msg)
1381 {
1382  RCLCPP_DEBUG(get_logger(), "AmclNode: A new map was received.");
1383  if (!nav2_util::validateMsg(*msg)) {
1384  RCLCPP_ERROR(get_logger(), "Received map message is malformed. Rejecting.");
1385  return;
1386  }
1387  if (first_map_only_ && first_map_received_) {
1388  return;
1389  }
1390  handleMapMessage(*msg);
1391  first_map_received_ = true;
1392 }
1393 
1394 void
1395 AmclNode::handleMapMessage(const nav_msgs::msg::OccupancyGrid & msg)
1396 {
1397  std::lock_guard<std::recursive_mutex> cfl(mutex_);
1398 
1399  RCLCPP_INFO(
1400  get_logger(), "Received a %d X %d map @ %.3f m/pix",
1401  msg.info.width,
1402  msg.info.height,
1403  msg.info.resolution);
1404  if (msg.header.frame_id != global_frame_id_) {
1405  RCLCPP_WARN(
1406  get_logger(), "Frame_id of map received:'%s' doesn't match global_frame_id:'%s'. This could"
1407  " cause issues with reading published topics",
1408  msg.header.frame_id.c_str(),
1409  global_frame_id_.c_str());
1410  }
1411  freeMapDependentMemory();
1412  map_ = convertMap(msg);
1413 
1414 #if NEW_UNIFORM_SAMPLING
1415  createFreeSpaceVector();
1416 #endif
1417 }
1418 
1419 void
1420 AmclNode::createFreeSpaceVector()
1421 {
1422  // Index of free space
1423  free_space_indices.resize(0);
1424  for (int i = 0; i < map_->size_x; i++) {
1425  for (int j = 0; j < map_->size_y; j++) {
1426  if (map_->cells[MAP_INDEX(map_, i, j)].occ_state == -1) {
1427  free_space_indices.push_back(std::make_pair(i, j));
1428  }
1429  }
1430  }
1431 }
1432 
1433 void
1434 AmclNode::freeMapDependentMemory()
1435 {
1436  if (map_ != NULL) {
1437  map_free(map_);
1438  map_ = NULL;
1439  }
1440 
1441  // Clear queued laser objects because they hold pointers to the existing
1442  // map, #5202.
1443  lasers_.clear();
1444  lasers_update_.clear();
1445  frame_to_laser_.clear();
1446 }
1447 
1448 // Convert an OccupancyGrid map message into the internal representation. This function
1449 // allocates a map_t and returns it.
1450 map_t *
1451 AmclNode::convertMap(const nav_msgs::msg::OccupancyGrid & map_msg)
1452 {
1453  map_t * map = map_alloc();
1454 
1455  map->size_x = map_msg.info.width;
1456  map->size_y = map_msg.info.height;
1457  map->scale = map_msg.info.resolution;
1458  map->origin_x = map_msg.info.origin.position.x + (map->size_x / 2) * map->scale;
1459  map->origin_y = map_msg.info.origin.position.y + (map->size_y / 2) * map->scale;
1460 
1461  map->cells =
1462  reinterpret_cast<map_cell_t *>(malloc(sizeof(map_cell_t) * map->size_x * map->size_y));
1463 
1464  // Convert to player format
1465  for (int i = 0; i < map->size_x * map->size_y; i++) {
1466  if (map_msg.data[i] == 0) {
1467  map->cells[i].occ_state = -1;
1468  } else if (map_msg.data[i] == 100) {
1469  map->cells[i].occ_state = +1;
1470  } else {
1471  map->cells[i].occ_state = 0;
1472  }
1473  }
1474 
1475  return map;
1476 }
1477 
1478 void
1479 AmclNode::initTransforms()
1480 {
1481  RCLCPP_INFO(get_logger(), "initTransforms");
1482 
1483  // Initialize transform listener and broadcaster
1484  tf_buffer_ = std::make_shared<tf2_ros::Buffer>(get_clock());
1485  auto timer_interface = std::make_shared<tf2_ros::CreateTimerROS>(
1486  get_node_base_interface(),
1487  get_node_timers_interface(),
1488  callback_group_);
1489  tf_buffer_->setCreateTimerInterface(timer_interface);
1490  tf_listener_ = std::make_shared<tf2_ros::TransformListener>(*tf_buffer_);
1491  tf_broadcaster_ = std::make_shared<tf2_ros::TransformBroadcaster>(shared_from_this());
1492 
1493  sent_first_transform_ = false;
1494  latest_tf_valid_ = false;
1495  latest_tf_ = tf2::Transform::getIdentity();
1496 }
1497 
1498 void
1499 AmclNode::initMessageFilters()
1500 {
1501  auto sub_opt = rclcpp::SubscriptionOptions();
1502  sub_opt.callback_group = callback_group_;
1503  laser_scan_sub_ = std::make_unique<message_filters::Subscriber<sensor_msgs::msg::LaserScan,
1504  rclcpp_lifecycle::LifecycleNode>>(
1505  shared_from_this(), scan_topic_, rmw_qos_profile_sensor_data, sub_opt);
1506 
1507  laser_scan_filter_ = std::make_unique<tf2_ros::MessageFilter<sensor_msgs::msg::LaserScan>>(
1508  *laser_scan_sub_, *tf_buffer_, odom_frame_id_, 10,
1509  get_node_logging_interface(),
1510  get_node_clock_interface(),
1511  transform_tolerance_);
1512 
1513 
1514  laser_scan_connection_ = laser_scan_filter_->registerCallback(
1515  std::bind(
1516  &AmclNode::laserReceived,
1517  this, std::placeholders::_1));
1518 }
1519 
1520 void
1521 AmclNode::initPubSub()
1522 {
1523  RCLCPP_INFO(get_logger(), "initPubSub");
1524 
1525  particle_cloud_pub_ = create_publisher<nav2_msgs::msg::ParticleCloud>(
1526  "particle_cloud",
1527  rclcpp::SensorDataQoS());
1528 
1529  pose_pub_ = create_publisher<geometry_msgs::msg::PoseWithCovarianceStamped>(
1530  "amcl_pose",
1531  rclcpp::QoS(rclcpp::KeepLast(1)).transient_local().reliable());
1532 
1533  initial_pose_sub_ = create_subscription<geometry_msgs::msg::PoseWithCovarianceStamped>(
1534  "initialpose", rclcpp::SystemDefaultsQoS(),
1535  std::bind(&AmclNode::initialPoseReceived, this, std::placeholders::_1));
1536 
1537  map_sub_ = create_subscription<nav_msgs::msg::OccupancyGrid>(
1538  map_topic_, rclcpp::QoS(rclcpp::KeepLast(1)).transient_local().reliable(),
1539  std::bind(&AmclNode::mapReceived, this, std::placeholders::_1));
1540 
1541  RCLCPP_INFO(get_logger(), "Subscribed to map topic.");
1542 }
1543 
1544 void
1545 AmclNode::initServices()
1546 {
1547  global_loc_srv_ = create_service<std_srvs::srv::Empty>(
1548  "reinitialize_global_localization",
1549  std::bind(&AmclNode::globalLocalizationCallback, this, _1, _2, _3));
1550 
1551  initial_guess_srv_ = create_service<nav2_msgs::srv::SetInitialPose>(
1552  "set_initial_pose",
1553  std::bind(&AmclNode::initialPoseReceivedSrv, this, _1, _2, _3));
1554 
1555  nomotion_update_srv_ = create_service<std_srvs::srv::Empty>(
1556  "request_nomotion_update",
1557  std::bind(&AmclNode::nomotionUpdateCallback, this, _1, _2, _3));
1558 }
1559 
1560 void
1561 AmclNode::initOdometry()
1562 {
1563  // TODO(mjeronimo): We should handle persistance of the last known pose of the robot. We could
1564  // then read that pose here and initialize using that.
1565 
1566  // When pausing and resuming, remember the last robot pose so we don't start at 0:0 again
1567  init_pose_[0] = last_published_pose_.pose.pose.position.x;
1568  init_pose_[1] = last_published_pose_.pose.pose.position.y;
1569  init_pose_[2] = tf2::getYaw(last_published_pose_.pose.pose.orientation);
1570 
1571  if (!initial_pose_is_known_) {
1572  init_cov_[0] = 0.5 * 0.5;
1573  init_cov_[1] = 0.5 * 0.5;
1574  init_cov_[2] = (M_PI / 12.0) * (M_PI / 12.0);
1575  } else {
1576  init_cov_[0] = last_published_pose_.pose.covariance[0];
1577  init_cov_[1] = last_published_pose_.pose.covariance[7];
1578  init_cov_[2] = last_published_pose_.pose.covariance[35];
1579  }
1580 
1581  motion_model_ = plugin_loader_.createSharedInstance(robot_model_type_);
1582  motion_model_->initialize(alpha1_, alpha2_, alpha3_, alpha4_, alpha5_);
1583 
1584  latest_odom_pose_ = geometry_msgs::msg::PoseStamped();
1585 }
1586 
1587 void
1588 AmclNode::initParticleFilter()
1589 {
1590  // Create the particle filter
1591  pf_ = pf_alloc(
1592  min_particles_, max_particles_, alpha_slow_, alpha_fast_,
1593  (pf_init_model_fn_t)AmclNode::uniformPoseGenerator);
1594  pf_->pop_err = pf_err_;
1595  pf_->pop_z = pf_z_;
1596 
1597  // Initialize the filter
1598  pf_vector_t pf_init_pose_mean = pf_vector_zero();
1599  pf_init_pose_mean.v[0] = init_pose_[0];
1600  pf_init_pose_mean.v[1] = init_pose_[1];
1601  pf_init_pose_mean.v[2] = init_pose_[2];
1602 
1603  pf_matrix_t pf_init_pose_cov = pf_matrix_zero();
1604  pf_init_pose_cov.m[0][0] = init_cov_[0];
1605  pf_init_pose_cov.m[1][1] = init_cov_[1];
1606  pf_init_pose_cov.m[2][2] = init_cov_[2];
1607 
1608  pf_init(pf_, pf_init_pose_mean, pf_init_pose_cov);
1609 
1610  pf_init_ = false;
1611  resample_count_ = 0;
1612  memset(&pf_odom_pose_, 0, sizeof(pf_odom_pose_));
1613 }
1614 
1615 void
1616 AmclNode::initLaserScan()
1617 {
1618  scan_error_count_ = 0;
1619  last_laser_received_ts_ = rclcpp::Time(0);
1620 }
1621 
1622 } // namespace nav2_amcl
1623 
1624 #include "rclcpp_components/register_node_macro.hpp"
1625 
1626 // Register the component with class_loader.
1627 // This acts as a sort of entry point, allowing the component to be discoverable when its library
1628 // is being loaded into a running process.
1629 RCLCPP_COMPONENTS_REGISTER_NODE(nav2_amcl::AmclNode)
Definition: map.hpp:61